Necrotic Myocardial Cells Release Damage-Associated Molecular Patterns That Provoke Fibroblast Activation In Vitro and Trigger Myocardial Inflammation and Fibrosis In Vivo
نویسندگان
چکیده
BACKGROUND Tissue injury triggers inflammatory responses that promote tissue fibrosis; however, the mechanisms that couple tissue injury, inflammation, and fibroblast activation are not known. Given that dying cells release proinflammatory "damage-associated molecular patterns" (DAMPs), we asked whether proteins released by necrotic myocardial cells (NMCs) were sufficient to activate fibroblasts in vitro by examining fibroblast activation after stimulation with proteins released by necrotic myocardial tissue, as well as in vivo by injecting proteins released by necrotic myocardial tissue into the hearts of mice and determining the extent of myocardial inflammation and fibrosis at 72 hours. METHODS AND RESULTS The freeze-thaw technique was used to induce myocardial necrosis in freshly excised mouse hearts. Supernatants from NMCs contained multiple DAMPs, including high mobility group box-1 (HMGB1), galectin-3, S100β, S100A8, S100A9, and interleukin-1α. NMCs provoked a significant increase in fibroblast proliferation, α-smooth muscle actin activation, and collagen 1A1 and 3A1 mRNA expression and significantly increased fibroblast motility in a cell-wounding assay in a Toll-like receptor 4 (TLR4)- and receptor for advanced glycation end products-dependent manner. NMC stimulation resulted in a significant 3- to 4-fold activation of Akt and Erk, whereas pretreatment with Akt (A6730) and Erk (U0126) inhibitors decreased NMC-induced fibroblast proliferation dose-dependently. The effects of NMCs on cell proliferation and collagen gene expression were mimicked by several recombinant DAMPs, including HMGB1 and galectin-3. Moreover, immunodepletion of HMGB1 in NMC supernatants abrogated NMC-induced cell proliferation. Finally, injection of NMC supernatants or recombinant HMGB1 into the heart provoked increased myocardial inflammation and fibrosis in wild-type mice but not in TLR4-deficient mice. CONCLUSIONS These studies constitute the initial demonstration that DAMPs released by NMCs induce fibroblast activation in vitro, as well as myocardial inflammation and fibrosis in vivo, at least in part, through TLR4-dependent signaling.
منابع مشابه
Primary sterile necrotic cells fail to cross-prime CD8+ T cells
Necrotic cells are known to activate the innate immune system and trigger inflammation by releasing damage associated molecular patterns (DAMPs). However, how necrotic cells influence the induction of antigen-specific CD8(+) T cell-mediated adaptive immune responses under sterile conditions, in the absence of pathogen associated molecular patterns (PAMPs), remains poorly understood. Here, we ex...
متن کاملEffect of endurance exercise training on morphological changes in rat heart tissue following experimental myocardial infarction
Introduction: Cardiac remodeling after myocardial infarction, is associated with progressive ventricular dysfunction and cardiovascular death. The purpose of this study was to examine the effect of endurance exercise training on morphological changes in rat heart tissue following experimental myocardial infarction. Materials and methods: Rats used in this experiment (8-10 weeks old, 235 &p...
متن کاملProtective role of cardiac CFTR activation upon early reperfusion against myocardial infarction.
BACKGROUND The cardiac isoform of the cystic fibrosis transmembrane conductance regulator (CFTR) was shown to be activated by β-adrenergic or purinergic stimulation and involved in cell volume regulation after osmotic swelling. Also, cardiac CFTR was reported to be essential in the mechanism by which ischemic preconditioning protects against ischemia/reperfusion(I/ R)-induced injury of the hear...
متن کاملPeroxynitrite induces HMGB1 release by cardiac cells in vitro and HMGB1 upregulation in the infarcted myocardium in vivo.
AIMS High-mobility group box 1 (HMGB1) is a nuclear protein actively secreted by immune cells and passively released by necrotic cells that initiates pro-inflammatory signalling through binding to the receptor for advance glycation end-products. HMGB1 has been established as a key inflammatory mediator during myocardial infarction, but the proximal mechanisms responsible for myocardial HMGB1 ex...
متن کاملEffect of high- intensity interval training on tissue changes of collagen type 1 and fibrosis percent in male rats with myocardial infarction
Introduction: Myocardial infarction (MI) is defined pathologically as cardiac muscle cell death due to abnormal blood flow, prolonged coronary artery ischemia, and replacement of cardiac tissue necrosis as a dense fibrotic lesion. Expression of collagen-1 protein levels and fibrosis increase after myocardial infarction in cardiac tissue. The aim of present study was to investigate the effect of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2015